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Entanglement and chaos in a square billiard with a magnetic field
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We study the dynamical entanglement between the spin and the spatial degrees of freedom for a spin-1/2
charged particle in a square billiard, subject to a nonhomogeneous magnetic field, a system which is classically
nonintegrable. This system has three degrees of freedom, one of them being strictly quantum, and we consider
initial states which are coherent states with spin in xhdirection. The center of the coherent state can be
chosen to lie on classically chaotic or regular initial conditions. We show that for chaotic initial conditions the
entanglement is rather fast and increases monotonically, while for the regular ones it may present strong
recoherences, whose period is related to the classical motion. We also show that this system exhibits special
initial conditions which entangle even faster than a typical chaotic one.
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Recent technological advances have made it possible tdegree of freedor®, and the spatial degrees of freed@y,
create and manipulate individual quantum states in the laban the case when onlp; can have chaotic dynamics. Cou-
ratory, thus allowing direct observations of entanglement angling of a qubit or a pair of qubits to a chaotic environment
decoherencél], concepts that are central to quantum com-has been studied for example[itl,12.
putation and quantum informatig2]. Dynamical generation On the other hand, in studies of quantum fidelity decay
of entanglement and its relation to classical chaos has bedhe classical dynamics dfi; andH, in Eq. (1) are always
the subject of many recent investigations. Fureyaal. [3] assumed to be qualitatively the same, i.e., initial conditions
have studied the Jaynes—Cummings model without th€lC) that behave regularly for, also behave regularly for
rotating-wave approximation, and found the entanglemenH, and the same holds for the chaotic ones. This is intuitive
rate to be greater for quantum states centered on classicalify H, is seen as a slightly perturbed versiontf. In the
chaotic initial conditions. In later work$4,5] they have present case, however, this is not always true. We shall con-
shown that a regular initial condition can sometimes lead testruct Hamiltonians, corresponding to spin up and spin
faster entanglement than a chaotic one and that recoherenaé®wn, whose phase spaces have regions which are regular
were related to the compactness of the spin degree aind stable for one Hamiltonian but chaotic for the other. For
freedom. ICs in this region the amount of entanglement grows faster

In the past few years much work has been done in thishan for a purely chaotic IC.
area[6], and also about the relation between decoherence We consider a spin-1/2 charged parti¢lgith massm
and fidelity, a measure of a system’s sensitivity to perturba=1 and chargeg=1) confined to a two-dimensiongRD)
tions. If a statdy,) evolves under the action of two different square-shaped quantum well of sidesubject to a nonho-
HamiltoniansH, andH,, then the overlap mogeneous perpendicular magnetic field, so that the Hamil-

[ |2 = (i €2l ol o2 (1) tonian inside the well igwe use units in whicth=1)

depends or; andt, and has been suggested as a good mea- _1 2, R s
sure of quantum chaoticity. One typically considgrst,, in H= 2[p AXYIF+ Bxy) - S, @
which case this can be considered as a time-reversal experi-

ment and(1) is called the quantum fidelity or the “Loschmidt Where

echo.” Jalabert and Pastawski show&tithat its decay de- .

pends on the classical Lyapunov exponent for a narrow wave A(x,y) = (\Y33 —Boy/2)%+ (- \X/3+Bx/2)y  (3)
packet in a chaotic region of phase space. Since then, many ) , o
different decay regimes have been investigg&idThe con- 1S the vector potential corresponding to the magnetic field
nection with decoherence comes as followsyi) is seen as -

the initial state of some “environment,” then its ability to B(X,y) = (Bo = A\X* = \y?)Z, (4)

induce decoherence upon some system is given by the over- i i )
lap (1), as analyzed for example [®,10. and the coordinates andy are measured in units &f.

Most of these previous works have considered the inter- 1 N€ parabolic profile of the magnetic field is given by
action of two subsystem®), and D,, or systems with two which is also responsible for the coupling between the spin
degrees of freedom. The system we study here is a spin-1/3"d the orbital mot.|on». .The maAgn?tudej Bf controls the
charged particle in a square billiard. This system has thre@mount of chaos. Sindg is in thez direction theS, compo-
degrees of freedom: two spatial ones, which have a veryient of the spin is conserved, and the Hamiltonian is block
well-defined classical limit, and the spin, which is strictly diagonal in the{|+),|-)} basis(denoting “spin up” and “spin
guantum. We consider the entanglement between the spitown,” respectively. It is natural to define
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FIG. 1. Poincaré sections f@&,=77 and\=25 (“spin up” on
top). The arc lengtls is measured in units of the sidle We use the
points denoted by® (regula)y, B (chaotig, and A (“mixed”) as
initial conditions for the quantum wave packet.

1
H, =

=SB AxYPE B -0, ()

because any initially separable state ligg(|+)+|-)) will
evolve according to

Mgy +) +|-) =My +) +eyl-), ()

and therefore will become entangled with time. Note tHat
andH_ play the role of the previoull; and H..
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ICs have the same ener§y 10°. These values are chosen so
that the dynamics is in the semiclassical regime, in the sense
that the wave packet can collide with the walls a few times
before spreading significantlgwe shall comment more on
these choices laterin Fig. 1 thex axis shows the arc length
s (in units of the sidgalong the boundary where the collision
occurs, counted from the lower left corner of the square, and
they axis shows the cosine of the angle between the tangent
of the trajectory just after the collision and the corresponding
side of the squargl4]. In the following we will use the ICs
marked with@ (regulay, B (chaotig, and A (regular inH_
but chaotic inH,, which we call “mixed’) for the center of
our initial coherent state, and we set the disperdien.1.
Let us denote byr the period of the® orbit at this energy
and measure time in units of

In order to quantify entanglement we use the linear en-
tropy 6, defined in terms of a partial tra¢s,15,

6=1-Tryp3, 9

where p, is the reduced density matrix of subsystédn,
given byp,=Tr;p. How fasté grows indicates how fast sub-
systemD, suffers decoherence due to the entanglement with
subsystenD;. Notice that we takd, as the spatial degrees
of freedom; we are thus tracing out the chaotic subsystem. If
we take the spin component &t0 to be(|+)+|-))/y2 and
define

eMz,2) = [Z.(1), (10
then the linear entropy at tinteis given by
1- > > 2
) = M (11

2

We see that the entanglement process is governed by the
overlap between the coherent state propagated Mijtland
the same state propagated with, the quantum fidelity.
Usually, when studying fidelity one considers a change in the
Hamiltonian caused by a variation in some external param-
eter. In the present study this is not the case, since the exis-
tence of two different Hamiltonians is due to the intrinsic

In what follows we will considefy) to be a coherent state spin of the particle. Therefore, the relation between fidelity
|z(,2,). Coherent states are minimum-uncertainty states thand entanglement appears naturally here. We also note that in

provide a natural phase-space description of quantum meghe present case the difference betwétnand H_ is con-
chanics[13]. They correspond to Gaussian wave functions trolled by A and need not be small in principle.

1
(XY|zoz) = b—exp{— IF=rol220% +ify-p},  (7)

Var

wherer=(x,y), fo=(Xo,Yo), P=(px. Py), and

L Yo ;bpy 8)

_ X _
Iy = — = I\sE, Zy—b\2 —

N b\eE V2

Note that we use equal variancdg=b,=b in both
directions.

We now place our coherent state in the chaotic IC denoted
by B in Fig. 1. Initially we have|Z.(0))=|Z.(0)) and =0,
indicating no entanglement. As time pas$2gt)) and|Z (t))
evolve differently, both becoming distorted and less local-
ized, leading to an increase i After some time the initial
states have spread all over the square, &rséturates to a
maximum value of 0.5, which corresponds to orthogonality
betweenZ,(t)) and|Z(1)).

In Fig. 2@ we see the probability densifyx,y|Z,(1))|? at
t=257. It is randomly distributed through the square. The

In the semiclassical limit, and for short times, the evolu-corresponding density folZ(t)) is very similar, although
tion (6) will, according to Ehrenfest’'s theorem, depend onorthogonal to this one. In Fig. 3 we see the corresponding

the classical dynamics dfl, and H_. In Fig. 1 we show

evolution of § (dashed ling which saturates very fast.

Poincaré sections, or bouncing maps, for both these Hamil- If we place the coherent state on the IC denotedBbin

tonians, where we have us&j}=77, A\=25, =50, and all

Fig. 1, the situation is different. A classical probability dis-
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FIG. 2. Probability density(x,y
condition (top) and for the regular on¢bottom) at t=25r. The
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FIG. 4. Distancel(t)=|r,(t)—f_(t)| between the two regular ICs.
Besides the period of the orbit there is another time scale, which
corresponds to the quantum recoherences.

that the latter takes a much longer time to saturate compared
to the first. Another important difference is the presence of
recoherences. Furuya al. [5] have studied recoherences in
the Jaynes—Cummings model, and concluded that the time
scale was related to the compactness of the spin phase space.
Even though we are also dealing with a spin, the reason for
the recoherences here is completely different. Let us assume
that |Z.(t)) approximately follows a classical trajectory in
configuration space given by (t)=[x.(t),y.(t)], and let us
calculate the distance

parameters are the same as in Fig. 1. The solid line is the periodic

classical trajectory.

tribution centered close to the periodic orbit would be boun
to stay inside the regular island: it could not leak into the
chaotic sea. A quantum wave function may tunnel to classi-
cally forbidden regions, but this takes place on a very large
time scale. Therefore, instead of spreading all over th
square, it remains localized around the classical trajectory for
some time. We can verify this by looking at the probability
density|(x,y|Z,(1))|2, shown in Fig. 2b) for t=25r. The state
|Z_(t)) is also localized.

The effect of this localization upon entanglement is clear
We see in Fig. 3 the evolution af as a solid line. The first
important difference between the chaotic and regular cases Is
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FIG. 3. Linear entropy as a function of tim@ units of the
basic periodr), for the regular(solid line), chaotic(dashed ling
and mixed(dotted ling initial conditions, depicted in Fig. 1.

50

d(t) = |F.(t) = (1) (12
dbetween these classical particles as a function of time. Since
.they have different energies, they rotate with different peri-
ods, as we can see from Fig. 4. The patrticles start at the same
goint, and they are again at the same pointaf/r. The
recoherence time is equal to this time.

Finally, we place our initial coherent state in the special
IC marked with aA. It is periodic and stable in thel_
dynamics but chaotic in thel, dynamics. Therefor¢z (t))
remains trapped inside the regularity island, |@ut)) is free

to spread over the chaotic sea. This produces a fast entangle-
ment, even faster than that associated with the purely chaotic
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FIG. 5. Linear entropy as a function of tim@ units of the
basic periodr) for the regular initial condition and different values
of \.
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IC, as we can see in Fig. 3. It has only small, erraticand quantum fidelity for this system. Chaotic initial condi-

oscillations. tions were seen to entangle in a fast and monotonic way,
We have also considered smaller values of the nonhomawhile regular ones may present strong recoherences, whose

geneity parametek, and we can see its influence on the time scale is related to the classical motion. We have also

Entanglelrlnenlt rate f<\3ftrt]hedregU|<’:}f imtﬁ' cor:jd;ltion in Fig. 5. shown special initial conditions which entangle faster than a
or small vajues oh the dynamics OH. andH, are Very  nicq chaotic one.

similar, and thus the amount of entanglement grows slowly. Finally, we note that billiards of this type should be ac-

Also the energy difference betwedd (t)) and |Z,(t)) is . . ) :
smaller, and therefore the recoherence time may becom‘éESSIbIe to experiment, using semiconductor quantum dots

much larger than the Ehrenfest time, so that all recoherencés@l- For a square well on GaAs/f&a_As of 1 um in
vanish and(t) grows almost monotonically. We do not show length the parameters we used correspond to energies of the
chaotic ICs because the analysis would be essentially th@rder of 10 meV and magnetic field3, of the order of
same. We also do not consider any mixed IC because thé0 mT. The coupling constart is fixed by the magnetic
stability island involved becomes too smalllaslecreases. moment of the electron, but the parabolic paramgtean be

In summary, we have studied the dynamical generation ogdjusted to enhance the coupling effect.
entanglement for a system with three degrees of freedom,
one of them being strictly quantum and the others being We acknowledge financial support from Fapesp
classical and displaying chaotic behavior. We have calculatetFundacdo de Amparo a Pesquisa do Estado de Sao)Paulo
the entanglement by tracing out the space, and this leads toad from CNPg(Conselho Nacional de Desenvolvimento
very natural connection between deterministic entanglemeriientifico e Tecnologico
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